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LIMITING BEHAVIOR OF THE NORM OF PRODUCTS
OF RANDOM MATRICES AND TWO PROBLEMS OF

GEMAN-HWANG

by

Z. D. Bai and Y. Q, Yin
University of Pittsburgh

ABSTRACT

In this paper, the authors proved that

lim I(Wfyn)k < (l+k)o k , a.s.

where J: n x n is a square random matrix with i.i.d. entries and 2 is the

variance of the entries of W. In proving the result, the.authors assumed

the existance of fourth monent of the entries of W.

Key words and Phrases: Spectral radius, limiting behavior, random matrices.
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1. INTRODUCTION

In the theory of large random matrices, how to dominate the norm

of a random matrix is a very important problem. This is the reason why

many authors are interested in this problem. For interesting works,

see Geman (1980), Jonsson (1983), Silverstein (1984) and Yin-Bai-

Krishnaiah (1984). In these papers, they consider the norm of a sample

covariance matrix, with different moment requirements. The newest

result of Yin-Bai-Krishnaiah requires only the existence of 4th moment.

In this paper, wconsidera different type of random matrices,

namelyW , i.e. a power of a square random matrix with iid entries.

The first result in this paper em I) is -

k
liH(~)I <(1+k)a , a.s. is the size of Rq)

,he-rR q is the variance of the entries of W. We assume only the

existence of the 4-th moment of the entries of W. From this result it

is easy to show that the spectral radius of W/rn is not greater than a

with probability 1. This result is known only for iid N(O,62) case.

In proving the above result, a new kind of graphs has to be

-. discussed carefully, ( and the truncation method used in Yin-Bai-

Krishnaiah (1984) is also important here.

As applications of the above result, we have solved two open

problems announced in the paper Geman-Hwang (1982). The solutions

are in §5, §6 and §7.

... ...... ... ... ........ . .. ..
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2. LIMITING BEHAVIOR OF MATRIX PRODUCT NORM

In Sections 2-4, we will prove the following theorems.

Theorem 2.1. Let [wij : = 1,2,...,j - 1,2,...} be iid random

variables, and Wn be the nx n matrix (w i) ij 1,2,...,n. Suppose

- w2 . 2 E 4
E w11 , E w11 a , w11 < 0.. (2.1)

Then, for any positive integer k, we have

lim sup I,( !n)kj < (k+l)ok a.s. (2.2)
n- -

Here I IAII denotes the operator norm of the matrix A.

Denote by Ai(A), i = 12,...,n, the n eigenvaluesof the nxn

matrix A. We have

Theorem 2.2. Under the same conditions as in Theorem 2.1, we have

lim sup max IXi ( !n) < a a.s.
i M l<i<n /n-

Theorem 2.2 can be easily deduced from Theorem 2.1 as follows:

For any integer k > 1, by Theorem 2.1,

lim sup max Ix ( : lim sup max I -a
W- li.n /n- n-_u 1ci<n i

< lim sup Il( - < Iko. a.s.

Letting k * we get Theorem 2.2.

*

.i.... . - *a"* * * . . .
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3. SOME LEMMAS

At first we state the following lemma which can be found in Yin-

Bai-Krishnaiah (1984).

Truncation Lemma. Let r be a number in the interval ( ,21,

{w ij - 1,2,...) be a set of iid random variables with E w11 = 0,

E1l 1 12/r < -. For each n, let W denote the px n matrix whose.. n

(i,j)-entry is wij , here p = p(n) satisfies p/n --- + y c (0,-), as

n co

Then there exists a sequence of positive numbers 6 6n such that

1. 6 -* 0, as n -,

2. P(W Wn , i.o.) = 0; here Wn is the px n matrix, with the (ij) entry

ijn =wj l{wi <nr ,ij

and the convergence speed of 6 to zero can be slower than any pre-

assigned speed.

In order to prove Theorem 2.1, we need some combinatorics. Let

il~i2,...,i 2km be a sequence,we define a multigraph r(k,m; il,...,i2km)

as follows:

1. The vertices of this graph are i1 ,i2 ,..., i2km. Some of them

may be equal.

2. There are 2km edges ee 2... e 2km . The ends of e are i and

ia+1 (
12kn+1 - ii). Any two of these edges are different even when

they have the same end sets. Sometimes we write i i instead of e
a a+l a

3. To each edge e there corresponds a number dir(e a), called- aa

the direction of e, such that",° a

+1, if [(a-l)/k] is even,
dir (e)-a L.-1, if [(a-l)/k] is odd.

e*.

S..2
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Two edges ea - ii eb i i are said to be coincident, if either

ia - ib , ia l i 1  and dir(ea)-dir(eb) , or i i, lai and dir(ea) -dir(eb).

A chainisasubgraph with vertex set {i ,i i a+l (1 a < b < 2mk+l)

and edge set (ea ,+,,...,e . We will denote such a chain by

ia ia+l 
b .

In the graph r(k,m; il,i 2 ... i2km), we classify the edges as

follows.

1. An edge i i is called an innovation if i is new, i.e. i #il....'i #i-
a-i a a aa a

The set of all innovations will be denoted by I.

2. Let S be the set of all edges i i which coincides with an
a-i a

innovation, and for any b < a, iNlib does not coincide with that

innovation.

3. All other edges consist a set called T.

if iaia+l' 'bb+1 are two edges satisfying the following properties:

(1) b < a;

(2) ibi+1 is single up to ia, i.e. it does not coincide with any
[b b".

edge of the chain iI1 2 ... i.
(3) Either ib - I and dir(ibib+I) - dir(iia+I), or ib 1 -

and dir(ibi) - -dir(ia,ia), then we say that Ia+ in
b b+l at a+. weat a is1

coincidable with i bib+ .

An edge of S is called singular if it is coincidable with just

one innovat ion.

An edge of S is called regular if it is not singular, i.e. it is

coincidable with more than one edge.

The proofs of Lemma 3.1, 3.2, 3.3 below are similar to the proofs

of Lemma 3.1, 3.2, 3.3 in Yin-Bai-Krishnaiah (1984).

Lemma 3.1. If in the chain i ia i iaiail
a a+l b iia i sintips

ib and Ib has been visited by iI1 2 ... then ia i+ 1 a ib contains

an edge of T.

• --, • -

=...............

.................................. ..-...... .. ,,-.-.,.-........
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Lemma 3.2. Let t be the number of equivalence classes of T under

the equivalence relation "coincidence". Then if iaia+1 is a regularaiais oisiabrlars o

edge of S, the number of edges with which ia i is coincidable is not

greater than t + 1.

Lemma 3.3. The number of regular edges of S is not greater than

twice the number of edges in T.

The chains Ll = i lI 2 ... ikik+l' L2 ik+l'k+ 2 ...i 2 k+l'-...

L2m i(2m l)k+l i(2m-l)k+2 i i2m 1 are called segments.

Lemma 3.4. Let I be the number of innovations. Then the number

of different ways to appoint the 2km edges to be of I,or S, or T, does
2kmn 2kmn-2.+2m

not exceed ( 22 ) (k+l)

Proof. Since the number of innovations are Z, the numbers of S
2km

and T must be 2 and 2km-2t, respectively. So there are ( 2) different

ways to select 2km-2Z edges from the 2km edges which are appointed

to be of T, and the others to be of I or of S.

Now consider a segment L c . Note that every edge in the same

segment has the same direction. Suppose that Lc contains U c edges of T.

Then Lc is split by these uc T-edges into at most Uc + 1 subchains

consisting of consecutive edges of I U S. Let the lengths of these

subchains be v1 ,v ... v +1, respectively (if there are less than
c

Uc + 1 such chains, then some vi at the rear part of this list are

*,."" zero). Consider the i-th subchain with vi edges. It is evident that;ii
if some edge in this chain is of I, then the next one (if any) must be

of I because of the same direction of them. So there are only v1 + 1

possible appointments for this chain, namely, III ... I, SII ... I,

SSI ... I, SSS ... SI, SSS ... S. So for the whole segment Lc, there

.. ,.,, ,. ... ..... ,. ,. .-.. -.. . .- . .. . .- ., . . . , . . - . , , ... . . . . . .



+are at most +1 (v+l) < (k+l) ways to appoint the k - non-T
a m tn i

edges to be of I or of S. Thus, for the whole graph, there 
are at

S2m2mv cc+ +2m (l 2 kUm - 2 + 2m

most 2m (+l = ways to appoint

most 11 (k+l) =(k+l)'

c=1

the 2Z non-T edges to be of I or 
of S.

.*,.%' 4.! *~ *'~ ~-'* :.-.~--.~ %**
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4. PROOF OF THEOREM 2.1

Now we apply the truncation lemma for r = and p(n) = n. We

need only to prove

lir sup 1-) II (k+l)a . a.s. (4.1)
n4rn

Define w wij n - E wij n and define W = (W jn) ij =1,2,...,n.

We shall prove that for any k > I

l., sup I( -)l <_ (k+l)a k  a.s. (4.2)

If (4.2) holds for any k > 1, since

III( IIl l(W )kllj 11H Wn )k -j I
rn /n Iri n

k-l ) n Wn fk-,-i_ l I ( -n I n l l I ( - I I

and
."' = •Ew1 I 11 " Wln

In Il I _1.. .,li IE 0,

by (4.2) we obtain

Wn k I n k.A
tim. sup ( - kW)Ik-i Qn k -L -1

lim sup I I( - ) 11 1E wllnl (k-)ak (4.3)

from which and by induction we can deduce (4.1). Hence to prove

Theorem 2.1, we need only to prove (4.2).

For saving notations, we can assume that W is an nx n matrix with
n

iid random entries wij , such that

E0, W n, E w < 1. (4.4)
11n  11 11ll_ (44)_

I:°



!,,/,, ., .- --. . , ,,, I m n n, _ -n n,

Here, without any loss, we suppose o = 1, and instead of 26 we write 6.

Under the condition (4.4), it is easy to see that

.,". )-2(6Fn , for £ > 2,
' EjWllt (4.5)

" )£-3d(6n)t- for I > 3.

It is enough to show that for any number z > (1+k)

C."O Wn  k,-" [ Pc(1 ( - ) I _z) < -. (4.6)

But since

-- W_, H k 2m Wn k T Wn km
) H ~amax~ ( ) (- ))

Wn  k Wn k T m
< r{-) f(-),

For any sequence m f m(n) of positive ,integers,

wk

[ P(Hw( / ,r-k1  > z)
n-i n

< k P(tr(wk(Wk)T)m > z2m nmk

n=1 n n -

z-=n m E tr(W (Wk) T)m
n-1 n n

And we need only to show that for some positive integers m -m(n)

-2m -ink E t(Wk(Wk)T) (47)

We have

E = E tr(Wk(Wn)) k E(w .Wi k )(W i+k

.2 n 3 k k+l k+2 k+1 k+3 k+2

2k+l 2k (2m-l)k+2 (2m-)k+l 2mk+l 2ink

Here, il,i 2,...,i2m k run over 1l,2,...,n} and i2mk+l - ii. For each

ili 2,..., 12mk we can define a graph r(k,m) as in Section 3.

- .' , - . S- " " . . . ~ .. . , ,

-. ...................................................................a..,.•
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Now we estimate the expectation

m-i k
M =  E H R (w I W w w ) .

a-0 b=l 2ak+b 2akbl (2a+l)k+b+l (2a+l)k+b

where(i!, i ..,i forms a canonical graph(i.e. Ia< max(il,... IVa, and il=l).
'2" 12km) caoia grahae

Suppose that in the graph r(k,m;il,2i,.. .i2km)

1. There are £ innovations

2. There are U innovations which coincide with some T-edges, and

the number of T-edges which coincide with the i-th innovation of this

kind is n., I =

3. There are t equivalence classes of T-edges split by the

relation "being coincident".

4. These classes in 3 which do not contain any innovation

have ml,m .... m edges respectively. (mi> 2, 1

It is easy to see that

2 EP ni+2 t- w mjM 1 (E= l)- E wE 11

and

2(k-u) + (ni+2) + mj - 2mk.
1=1 j=l

So by (4.4) and (4.5), we obtain

U 6 k-tt t ),F2km-2t-t

IMI < d' (6 Vn )2km2-t < m (& 2 tn (4.8)

for n, hence for m, large enough.

Now we estimate the sum E of all expectations whose graphs
n

r(k,m) do not have single edges.

Let 9 denote the number of innovations of the graph r(km). Then

there are . S-edges and 2km-2Z T-edges. For a fixed canonical graph

X+41
r(k,m) with £ innovations, there are n! / (n-t-l)! < n different

graphs which correspond to this canonical graph.

p:-
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By Lemma 3.4, there are at most (2)(k+l) 2km-2t+2m different

ways to appoint the 2km edges to be of I or of S or of T.

Let t denote the number of noncoincident T-edges. Because our

graphs do not have single throughout edges, we have I < mk and

1 < t < 2km-21 if I < mk-i.

Next we bound the number of different ways to appoint each edge in

a canonical graph with given positions of the Z innovations, I S-edges

and 2km-2Z T-edges and with t different T-edges. Since each edge is an

element of the left-upper 2kmx 2km submatrix of W n  so there are at

most ( (2km)2) t 2km - 2  different ways to appoint the t different T-edges
t

into their 2km-21 different positions.

Each innovation in a, canonical graph is uniquely determined by the edges before it,

and so iseach singular S edge. By Lemma 3.2 and 3.3, there are at most

4km-41
(t+l) different ways to appoint the regular edges of S to their

positions. Here we should note that whether an S-edge is singular or

regular is determined by all the edges before it.

From the above arguments and (4.8), we get

IE'I mk )2k-2t (2km) 2km-2iJEn 
-1 1 ( 2km)(k+l) 2k-21+2m n L+l 2I2Z ((2 t2 2

SLa 1 tal

.. X (t+l) 4 km - 4 1 t (y )2km-21-t

mk 2km-21 3t 6km-6t 2km-2 -
-< n (2km)(k+1)2km_2 1+2m I (2km) (t+l) Avn-)-

0 2 t t2l
here I At -1, conveniented for saving notations.

ti
By the elementary inequality

t (t+l) b < b)b for (0 < a < 1, b > 0)

we get

-- -- __ l l e.. . . . . . . . . .. . . . . . . . . .... :- .t l l l.. . . . . .



knlmk 2111 1/6 6krn-61

_ I _2 (k 2m

1E. km+- 2kin 2km-21+2m(2k) 6km86 6km--
'. log ( Fn) -

If we select m - m(n) A(n) log n such that

1. A(n) - -

2. A(n) 61/ 6 . 0

t hen
" 6km61/6i

6kr6 0, (n " a)

":log 6 r
lg(2km) 3

Thus we obtain for large n
mkIE_ < n km+2  (2km) ((k+i) 2  km-1 (k+l) 2m

< nkm +2 (I + (k+l)6l/2)2km (k+l)2m

Since z > (l+k) and 6 o 0, we have

z_2m n jkmiEn

< C (n 2/m(l+(k+l)6 /2)
2 k (k+l)/z 0 )m,n-i

n rn

-"< C nm <=

n-i

where 0 < < 1 is a constant. Here the last series converges because

m/log n -* =. The proof is finished.

1%

1"
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5. TWO PROBLEMS OF GEMAN-HWANG

In Geman-Hwang (1982), they suggested the following system of

linear equations with unknown n x 1 vector Xn

X = n +L W X (5.1)

nn n n

where W is annx n matrix whose (ij)-entry is wij and W - :

i,j = 1,2,...) is an infinite matrix of iid random variables, and 1

n

is the nx 1 vector (1,i,...,1)T

T
If Xn - (Xnl,...,Xnn) , then for any integer m > 1, Geman and Hwang

proved that as n - -,

2
(Xnin 2 ,.. ,Xnm)

T  N(l, _2 I) weakly, (5.2)

under the conditions

2 2 1
1. E w 1 1 O0,0 < E Wl- <

2. EIW WI <. na n for any integer n" > 1; a is a positive constant.

Geman and Hwang pointed out that the computer simulations support

(5.2) even in the case of uniform distribution on [-1,1], where

2 1
a - 3"

We will prove that (5.2) is true even when 2 < 1 and Ew1ll < a.

Theorem 5.1. Let X be the solution of (5.1) whenever (I - W )

is nonsingular, otherwise define Xn - 0. Then (5.2) holds when

E w O, E w 2 . < 1 and EfwI 4 m.

I. Geman and Hwang (1982) suggested a system of differential equations

X(t) - aX (t) + W X (t), X (0) - 1 . (5.3)
nn n n n n

n

They proved that for any integer m >_ 1, real T > 0, Xnl(.),...,x(.

(the first m components of the vector X(.), the solution of (5.3))

tend to m iid Gaussian processes weakly, as n - -,on (0,T]. Each of

these m processes has mean P(t) e a and covariance function

- '
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C(t,s) - ea (t+s) Qo(ts) k

k-i (k!)
2

They supposed among others the following moment requirement

Elwll n < n for all n > 2, and some 8 > 0.

In the same paper, they conjectured that the analogous theorem

should hold for the equation
nW

X n (t) - axn (t) + _ x (t) + 1n x(o) 1 n . (5.4)| /n nn

We will prove

2 4
Theorem 5.2. Suppose E w1  - 0, -E wll 1, and E w11 < . Let

X (t) be the solution of

X (t) - aX (t) + W X t) + a 1, X(O) - 1 (5.5)

n n n n n

Then for any integer m > 1, real T > 0, Xn (t),...,Xn(t) tend to m iid

Gaussian processes weakly on [0,T] as n -. The mean of these

processes is
t ft at B at

(t) - e t + 8 eas ds e e +- Ce -1), (.6)
fo a

the covariance function is

I k at +ka ska
C(t,s) - (t e + e du)(skeas + 0 u e du).

k-i (kM) 0O
(5.7)

Remark. When 8 - 0, Theorem 5.2 reduces to an extension of Geman-

Hwang theorem. When 8 1 1, Theorem 5.2 includes a proof of Geman-

Hwang' s conjecture.

.........................................o. .'
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6. PROOF OF THEOREM 5.1

By the Truncation Lemta; we can assume that the entries of W are
n

bounded by rn6, here 6 - 6 -~0 arbitrarily slow. We suppose 6 is

defined as in the proof of Theorem 2.1.

Write Y - X - l, A- Wn//n . (5.1) is equivalent to

"'"(I - A)Y - Al
:-n n

k-I
Multiply both sides by i A , we get

i=O
k

zn df( -Ak)y [ Aln1 (6.1)
n n n

i-1

We need the following lemma.

Lemma 6.1. Suppose

1. {w ; i,j = 1,2,... are iid random variables; and Wn is the

matrix (wij; 1 < i, j . n);

2. Ew -0, E w 2 a2 , E w 4
11 11

Then if a(i,k,n) denotes the i-th component of the vector ( - n )k 1n

for any distinct ordered pairs (i1 ,kl),...,(im kM), as n ,

(ai ln,.,(m k m n)) T --- , Hm(OA m)

where A - diag( 2kl a 2k ) .

m

The proof of Lemma 6.1 is almost the same as the proof in the

Appendix of Geman-Hwang (1982) and is therefore omitted here.

By Truncation Lemma and Lemma 6.1, it is not difficult to see that
k

(I0)Z w N(O0,  a 2i I), as n . (6.2)

Here I is the mxm identity matrix. Also, if (Zn) is the i-th
m n i

component of Z E(z ) 2 a 2 1 as n - ,. Here the reader has to
ni=

note that we have truncated the entries of W at /n 6.

V..
.: ? .i 2¢,, ..'-...,,.. ....,,:..:,... . . . . .. . . . . . . . . . . . . . . ........... .... Q ...%, . " . . .
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In order to prove Theorem 5.1, we notice that

X =1 + Y =1 + Z + Aky.

n n n n

Then, if t (tl,...,t M)T, i i

Eeit'(I 0O)(Xn-1n) _ e-1/2 t't i2j

< jE eit'(ImO)(X -ln) - E e an 1

P.. i it(i0)nk k
+ E e it'(IMO)znexp{-- t't a 2 + t t I a 2i-ex( - t'tj

j=1 J-1

=a 1 + a 2 + a3,

AS n =, a2 - 0, by (6.2).

Now we estimate a1. We have for any e > 0

al < Eleit ' (I 1 O)Ay- iIj. 2 P(11(0mO)AkYl I _ C) + *(C)

Here ()- sup le i I 0 as E - 0.

We consider only those k, for which (1+k) 
/ k a < .

Let A - An,k ' {W C S: A JAl < n k }, where (1+k)l1k a < ni < 1,

n is fixed. Evidently P(A) - 1 as n - - by Theorem 2.1. Thus

P(HI(Im0)AkYI >_ e) < P(fl(ImO)Akyj 1 2 , I IAkll < ,k) + P(I IAk I> nk )

- II(IM0)A kXj 1 A + P(jjA 11 > nk)
£2 aA

mT Ayj1 l + 1 - P(A), (6.3)

en

since the components of Aky 1 have the same distribution.

We have

1 k ky+ k..ky k ky
AkYA(I A) A AA Az + A(Ay),

7.



• .- o ..- . .. , O.

so

IIAk II .I1# 11l IJz nl1 + IIAkll IIAk II,

and
Ilmilk

1< 1< k l zl , (6.4)
a 1 -JlAkJ I n A k n

By (6.3) and (6.4),

"" 2k 2  1
• fn 1-rn

Let n 4 , we get

ky " k )2 k 2

li P(j(I ) nk 2 Y .

So

':n JE eit'(ImO)(Xnln)-exp- t't o2j}I< a + a3vi J E e.I l al 1 a 3

k 2 k
< (f 0 2J + *(c)+Iexp( - t't J 2 -2tJ "1

2 1- n k =J.1

Letting k- -, and then £4 0, we see that the left hand side

tends to zero.

-i". . .

am* 
•

-. S S S. .
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" 7. PROOF OF THEOREM 5.2

It is easy to verify that

1t k k at tkas
' t (- 1n (tke1t + a e ds) (7.1)n k ! n

* 'is the solution to (5.5).

Theorem 5.2 is a consequence of the following lemma.

Lemma 7.1. Let {wij: ij 1 l2,... be a family of iid random

variables with E wll = 0, E w 2 1 and E w 4 < W, and W - (w
n i

-. I < i < n, 1 < i < n).

Let {gk(.), k = 0,1,...) be a sequence of continuous functions

satisfying
-k
i.0 sup Igk(t)I < , (7.2)

" -- k= O0<t<T

here r > 2, T > 0 are positive constants.

Then for any integer m > 1, as n - the stochastic process

(I0) I 1 Wn~k t

" m k 0O n )I n gk(t), t e [OT], tends to an m-dimensional

Gaussian process with iid components, each with mean go(t) ando

covariance function c(ts) = ( 152

k=l-k) gk(t) gk(s).

Proof. Let

Zn (t) = (Znl(t),...,Z r(t))T T -._k n gk(t).
k-l r

We prove that the sequence {Zn(.),.. . ,Z  n - 1,2,...) of

stochastic processes is tight in Cm[O,t]. It is easy to see that we

need only to show that (Zni (.), n - 1,2,... is tight in C[0,T], 1 < i <

Let A (W . [l ll (C) Q ri. By Theorem 2.1, P(An) 1.
.%;

n n.
DA



Let

P (6) sup gk(t) - g k (s )

k t-sl <6
t,s e [OT]

.(i,k,n) ((-) 1n  the i-th component of ( )
.n i I "1

We have 0 P

sup 4IZn(t) - zn(s)l < lac(i,k,n)l

It-sl < 6 k-l
. t,s c 10,T]

hence

1ii 1-im P( sup < zi.(t) - Z ni(s)l > C)
60 n- t-sI < 6

ts E T

OD P (6)
< 1in, 7-'- P(L jQ(i,k,")l "-"- > C)

6-0 n-' k-l k!

- P (6)

Eim [1(i,k,n)[ - + ( - (n))
6.-0 n- k-l k!

-- fk E I [a(i,kn) I- m l imr - E k !
6-o.0 n- n

It is easy to see that c(ik,n) l n,...,a(n,k,n) 1an ial,2,...,n, tave an

identical distribution. Therefore

1/2 2
E 1 ic(ik,n)I II E 2 1 A a (ikn)I

n n

n W 1 n) k h112 11/2
- An

. < ~[E , I IW~'~ < r•

So,
Sli s( sup 1zn(t) - Zn(i11 > C)

6+ - I t-aI <6
ts e T

im - rk0.
"- 0 k 1  k

e e
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Thus, the tightness of the family {Z ni(.); n 1,2,... of

stochastic processes is established.

Finally we show that for any positive integer I and

. t , .. , ,t  c [0,T], as n

m 9.M - 9
z (t 1xp -- I I X x)'v C(tj

E exp{i [ . X.Zj nvt)--- exp{ ( v1 ~ ~
ex ~ V* nv j2 Vjvjv- 1-i v-i J-1 q-1

here i - /1 and A Vj} are real numbers.

Let

ep (t) I (( 1hiv n -v

k'p+l ,n k!

gk(t)a . c(vk,n) , 1,...,n.
kp+1 k!

Let sup gk(t). Then for any e > 0,
tc[EO,T]

1im li P(e p  (t )I • ) l I E 1 a(vkn)I
.p4-' n ,n p-0 n-,.- C k-p+l ' a ,k

1- k•~ ~~ ~ "i - -€lm B-~ 0 k . (7.3)

-C p.Io kp

On the other hand, by (7.2)

'-. - - - 0. (7.4)
2P k-pI (k)- p. gkm1 (k!)

We have

E expi 1 A I a(v, k, n)

S m 9
E m I p c t~=1 J-I q=1 VJ v

,E exp x a(v, k, n)" - tv- J-1 VJ k-1 k

-v-I jul J k-I

::i°x•~
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+ ~E exp~i m (v, k, n) I! .
liv-1 Jul vJ k-i

-I k x Jul 4'1k

2 3i

3Ix 2  1 'k2'j
v- Ij-p 1 qa ul v - ~ ~ ~

2vl jl ql vjvq i q ~ i~

aj-i q- VI x q kL,2 g(...L(t~gt}

3 2ep{ 2 2 q1 Xvjvqf(~ vk')1 jm~m km asp

4
t it z Go~.. . ..~~~**~~_ 2 t D ~ 4 A .
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